Vascular Anatomy and Physiology

Blood
Blood Clotting
Vessel Anatomy
Application of Concepts

Functions of Blood
- Transportation
 - Oxygen, CO2, nutrients and waste
- Regulation
 - pH and electrolyte concentrations

Functions of Blood
- Response to vessel injury
 - Blood clotting
- Defend against toxins and pathogens
- Assist in temperature regulation

Blood Components
- Plasma
 - Electrolytes
 - Proteins
 - Glucose
- Erythrocytes
 - Hemoglobin
 - Carries oxygen
 - Carries carbon dioxide
- Leukocytes
 - White blood cells
 - Elements of defense
 - Respond to injury, toxins, bacteria, and viruses
- Platelets
 - Fragments of erythrocytes
 - Assist with blood clotting

Blood Clotting

Events of a Tissue Injury
- Internal or external injury will stimulate a response
- Various “responders” and systems are activated
 - Histamine
 - Leukocytes
 - Phagocytes, antibodies, etc.
 - Blood clotting
Events of a Tissue Injury

- Responders flood the area to deal with the injury
- Blood clots form around the area to contain the area of damage

Steps of Blood Clotting

1) Vascular spasm
 - Immediate response
 - Minimizes initial bleeding loss

2) Platelet plug
 - Platelets drawn to the site
 - They become sticky and bind to the injured tissue as well as each other

Steps of Blood Clotting

3) Coagulation
 - Platelets stimulate the clotting factors in plasma
 - Thrombin is formed
 - Thrombin is then used to form fibrin
 - Fibrin will grow a “net” at the injury site

Coagulation, Continued

- Purpose of the fibrin “net”
 - Contains the platelets already at the site
 - Traps more platelets to build the blood clot
 - Keeps the body’s responders inside the damage zone in order to rebuild the tissue

Steps of Blood Clotting

5) Fibrinolysis
 - Eventual breakdown of the clot by plasmin
 - This occurs after more permanent tissue forms at the injured site
 - This process takes from hours-days to complete

EMS Applications of Blood Clotting
Conditions that stimulate blood clotting

- CVA and MI
 - Atherosclerotic plaque on the vessel wall tears, stimulating an injury response
 - The clot builds on top of the plaque and narrows the artery (thrombus)
 - Reduction of blood supply to the tissue surrounding the obstructed vessel

- Conditions that Stimulate Blood Clotting

 - Embolus
 - Obstruction of a vessel with a blood clot that originated in another area of the body
 - Examples
 - Pulmonary embolus from a clot generated in another area of the body in a bedridden patient
 - CVA from a clot that broke free from the right atrium in a patient with atrial fibrillation

- Conditions that Stimulate Blood Clotting

 - Severe burns
 - Systemic inflammation
 - Typically associated with massive bacterial infections
 - Bedridden patients
 - Clotting factors in the blood accumulate and stimulate spontaneous clotting

- Conditions That Delay Blood Clotting

 - Hemophilia
 - Low or missing clotting factors in the blood
 - Thrombocytopenia
 - Dysfunction with platelets in the blood
 - Causes
 - Chronic alcoholism
 - Blood transfusion reactions
 - Immune disorders (HIV and leukemia, specifically)

- Skin Signs of Dysfunctional Blood Clotting

 - Purpura and petechiae
 - Bleeding under the skin
 - Non-blanching discoloration
 - Indicates the presence of abnormal vessel permeability or damage

- Causes of Purpura and Petechiae

 - Non-life threatening
 - Chronic alcoholism
 - Advanced age
 - Chronic medication therapy
 - Steroid anti-inflammatory drugs
 - Presence of the purpura is small and limited to areas prone to injury
Causes of Purpura and Petechiae
- Potentially life threatening
 - Thrombocytopenia
- Life threatening
 - Crush injuries and traumatic asphyxia
 - Massive bloodborne bacterial infection
 - Blood transfusion reactions

Medications and Blood Clotting
- Aspirin
 - Blocks the platelet’s ability to stick together and to stimulate the clotting response
- Heparin
 - Directly inactivates the thrombin, the precursor to fibrin
- Coumadin
 - Blocks the actions of certain clotting factors in the blood
 - Indirectly blocks thrombin development

Medications and Blood Clotting
- “Clot Busters”
 - Medications used to treat AMI
 - Stimulate the development of plasmin
 - Rapid breakdown of all clotting in the body
- “Clot buster” names
 - Streptokinase
 - Urokinase
 - Tissue plasminogen activator (t-PA)

Blood Vessel Anatomy and Physiology

A little anatomy

Vessel Anatomy
- Outer layer
- Elasticity
- Middle layer
- Muscle
- Vasoconstriction
- Inner layer
- Lumen of the vessel
Vessel Wall Comparisons

Artery and Vein Comparisons

The Capillary
- Wall structure
 - 1 cell layer thick!
 - No muscular layer
 - Porous
 - Site of gas exchange
 - Exchange is based upon pressure changes within the capillary bed

Capillary Sphincters
- Muscular bands at the entrance and exit of the capillary bed
- Controls fluid movement to the cells

Capillary Blood Flow
- Opening/closing of sphincters will change the pressure between the capillary and the cells
- This assists with gas exchange
- Control of capillary sphincters
- Changes in O₂ and CO₂ levels
- Changes in pH
- Sympathetic NS stimulation

Blood Flow
- Getting blood to the cells is a result of several factors
 - Cardiac output
 - Preload
 - Contractility
 - Afterload
 - Resistance to blood flow
 - Turbulence
 - Viscosity of the blood
Blood Flow
- Blood flow may be measured in part by blood pressure
 - \(BP = \text{cardiac output} \times \text{peripheral vascular resistance (PVR)} \)
- The greatest amount of PVR occurs at the arteriole and capillary level

Control of Capillary Sphincters
- Stimulation by the sympathetic nervous system
 - Closure of precapillary sphincters in the periphery
 - Diverts blood to core organs
- Concentrations of oxygen and carbon dioxide
 - Opening and closing to increase oxygen delivery and remove wastes quickly

Blood Pressure Regulation
- Feedback loops
 - Similar use of the medulla and input from chemoreceptors and baroreceptors as the heart
- Response of the medulla
 - Autonomic nervous system
 - Sympathetic nervous system
 - Increase in BP by increasing both cardiac output and PVR

Response of the Medulla
- Chemical controls for increasing BP
 - Epinephrine and norepinephrine from the adrenal gland
 - Similar effects as the sympathetic nervous system
 - Longer-lasting effects
 - Anti-diuretic hormone
 - Stimulated in response to low fluid or electrolyte levels
 - Retains water at the kidneys
 - Causes vasoconstriction

Application of Blood Flow and Perfusion

Hypovolemia
- Fluid loss = drop in pressure in the vessels
- Hormones released to stop water loss in the kidneys
- Response of the sympathetic nervous system
 - Closing of capillary sphincters in the periphery
 - Vasoconstriction
 - Increase in cardiac output
 - Increased HR and contractility
Dehydration
- Impacts on Perfusion
 - Thickens blood
 - Changes electrolyte concentrations
 - Increases the viscosity of blood
 - Reduced preload to the heart
- Compensation
 - Baroreceptors stimulated
 - Sympathetic NS
 - ADH

Heart Attack
- Impacts on Perfusion
 - Tissue damage = reduction in contractility
 - Reduction of stroke volume
 - Reduction in cardiac output
- Compensation
 - Baroreceptors and chemoreceptors sense low pressure and oxygen delivery
 - Stimulate the sympathetic nervous system
 - Increase in vasoconstriction
 - Stimulate the heart to beat faster and harder

Vascular Disorders
- Chronic Hypertension
- Hypertensive Emergency
- Aortic Aneurysm

Hypertension Pathology
- Constriction of the arteries/arterioles
- Sympathetic nervous system response
 - Stress
 - Stimulants
 - Cold medicines

Hypertension Pathology
- Increased pressure inside of the arteries/arterioles
 - Significant fluid shifts into the vessels
 - Pre-eclampsia (toxemia of pregnancy)
 - Chronic fluid retention
 - CHF
 - Kidney failure

Hypertension Pathology
- Review of arterial wall structure
- Chronic Consequences
 - CVA
 - Aortic aneurysm
 - CHF and acute pulmonary edema
 - Renal failure
Causes of Acute Hypertension
- Toxemia of pregnancy
- Non-compliance with anti-hypertensive medications
 - “Hypertensive emergency”
- Increased intracranial pressure
 - Head trauma
 - CVA

Hypertensive Emergency
- Any sudden increase in BP
 - Diastolic typically rises above 100-115 mmHg
- History of hypertension
- Precursors
 - Change in BP meds
 - Change in BP med doses
 - Stoppage of BP meds

Hypertensive Emergency
- Symptoms:
 - Blurred Vision
 - Confusion
 - Headache
 - Slurred speech
 - Acute pulmonary edema
 - Weakness
 - Nausea/vomiting
 - Weak bilateral grips

 - Presentation may be similar to a CVA
 - Signs and symptoms are typically bilateral
 - A thorough history must be performed to differentiate the two

Narrowing the causes of high blood pressure
- CVA, TIA
 - Unilateral symptoms and signs
 - 1-sided arm drift, leans to one side, 1-sided facial droop
- Intracranial bleed
 - History of recent trauma
 - History of brain aneurysms
- Hypertensive Emergency
 - Previous episodes
 - Change in anti-hypertensive medication or dose

Treatment of Hypertensive Emergency
- Nitroglycerin
 - Systemic vasodilation
 - 0.4mg every 3-5 minutes
 - Reassess blood pressure and neurological signs every 3-5 minutes as well
- Morphine sulfate
 - Systemic vasodilation
 - May lower consciousness

Aortic Aneurysm
- Abnormal balloononing of the aorta
- Weakening of interior walls
- Blood accumulation between the internal layers
Aortic Aneurysm

- Contributing factors
 - Atherosclerosis
 - Hypertension
 - Trauma
- Development may be slow
- Patient may be asymptomatic

Aortic Dissection

- Pathophysiology
 - Further tears between the arterial walls
 - More blood accumulation in the middle layer
 - Increased pressure may cause a rupture of the outer wall

Patient Presentation

- Signs of shock
 - Near-syncope
 - Orthostatic changes to vital signs
 - Unequal pulses/blood pressure readings in extremities
- Sudden, severe, pain
 - Tearing or stabbing in the abdomen or back
 - Radiation to groin, back, lower back
- Abdominal rigidity or pulsating mass
- Nausea or vomiting

Management

- High-flow oxygen
- IV therapy
 - Titration of fluids
 - Patient mentation
 - Systolic blood pressure of 90-100mmHg
- Transport considerations
 - Facility with surgical capabilities

THE END